LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - APRIL 2023
UMT 6501 - COMPLEX ANALYSIS

Date: 29-04-2023
Time: 09:00 AM - 12:00 NOON

PART - A

Q. No

Answer ALL questions

($10 \times 2=20$ Marks)
1 Evaluate: $\lim _{z \rightarrow 3} \frac{z^{2}-9}{z-3}$.

Define conformal mapping.

PART - B

Answer any FIVE questions
(5x8=40 Marks)
11 Verify C-R equations for $f(z)=\left\{\begin{array}{cc}\frac{x y}{x^{2}+y^{2}}, & z \neq 0 \\ 0, & z=0\end{array}\right.$. Is it differentiable at the origin?
Show that an analytic function in a region with constant modulus is constant.
Evaluate $\int_{C} \frac{z d z}{z^{2}-1}$ where C is $|z|=2$, using Cauchy's integral formula.
State Liouville's theorem and deduce the fundamental theorem of algebra.
State and prove Cauchy residue theorem.
16 Determine the bilinear transformation that maps the points $-1,0,1$ in the z-plane onto the points $0, i, 3 i$ in the $w-$ plane.
Find the residue of $f(z)=\frac{\sin z}{z \cos z}$ at each of its poles inside the circle $|z|=2$.

18
Expand $f(z)=\frac{-1}{(z-1)(z-2)}$ as a Laurent series in $1<|z|<2$.

PART - C

Answer any TWO questions

($2 \times 20=40$ Marks)
19 State and prove necessary and sufficient condition for $f(z)$ to be differentiable at a point.

20
(a) If $f(z)=u+i v$ is an analytic function and $u(x, y)=\frac{\sin 2 x}{\cosh 2 y+\cos 2 x}$, find $f(z)$
(b) State and Prove Cauchy's integral formula

21 (a) State and prove Taylor's theorem.
(b) Using Contour integration, evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$.

22 (a) Discuss the transformation $\omega=\frac{1}{z}$
(b) State and prove Rouche's theorem.

